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The Determination of Structure Factors by Means of Pendell6sung Fringes 
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BY N. KA'ro 

Department of Applied Physics, Faculty of Engineering, Nagoya University, Nagoya, Japan 

The theoretical basis and the experimental procedures of the Pendell6sung method are described. Struc- 
ture factors IFgl can be determined on the absolute scale by measuring the fringe spacing Ag on the 
diffraction topographs and the angles involved in a geometrical factor ¢,g. The experimental results so 
far obtained on Si, Ge and c~-quartz are briefly reviewed in comparison with the results obtained by 
other methods. Effects of absorption and of lattice distortions are estimated to be of about 0" 1%. The 
errors in measuring Ag are less than 0.1% in favourable cases. At present, the accuracy in IFgl is limited by 
the difficulty in determining ~g accurately. It is about 1%. 

The ratio of structure factors can be determined with an accuracy of 0" 1% by taking the ratio of the 
fringe spacings. The following examples are described: (i) IFhk,~l/IFn~,zl of or-quartz, (ii) the ratio of 
IFgl of Si at low and room temperatures and (iii) IFgl/IFol of Si. Through the experiment (ii), the increase 
of the Debye temperature at low temperatures (_~40 °K) was confirmed. In experiment (iii), the Pendel- 
16sung fringes and X-ray interferometry fringes are used, whose spacings are proportional to IFgl and 
IF0h respectively. Since IF01 is essentially the total charge Z in the unit cell, the [Fgl value determined 
by this method is the truly absolute value. 

I. Introduction 

immediately after the discovery of crystal diffraction 
of X-rays, Ewald (1916a, b, 1917) developed the 
fundamental theory on the interaction of electro- 
magnetic waves and perfect crystals. A few years 
earlier Darwin (1914a, b) had also presented a 
phenomenological theory which dealt with the dynam- 
ical interaction between the incident wave and the 
Bragg-reflected waves. These theories are the starting 
point of the theory which we now call the dynamical 
theory of crystal diffraction. Later yon Laue (1931, 
1949) and Zachariasen (1945, 1952) further de- 
veloped the theory. 

The usual kinematical theory describes the crystal 
waves in terms of the incident wave Do= exp i(k0. r) 
and Bragg reflected waves Dg= exp i(kg. r). Here- 
after, they will be called O wave and G waves. The 
method is intuitive and adequate in the cases where 
the interaction among O and G waves is weak enough 
or the crystal is sufficiently thin so that the Born ap- 
proximation is permitted. From a wave-mechanical 
viewpoint, the wave field can be described in terms of 
a number of linear combinations, C<oODo + C~)D~+ . . .  
(i= 1,2, . . . ) ,  which constitute a set of orthogonal 
bases. This coupled wave is called a Bloch wave owing 
to his first introducing it in another field of wave 
mechanics (Bloch, 1928). This approach is not only 
convenient when the dynamical interaction among O 
and G waves is considered, but also more general, 
provided that the crystal is perfect or nearly perfect. 
In fact, the authors mentioned above employed waves 
equivalent to the Bloch waves. 

When a crystal wave field is excited by a single plane 
wave, the degrees of freedom of the crystal wave are 
the number of O and G waves. Thus, we must consider 
Bloch waves of the same number for describing the 

crystal wave field. In two-beam cases where an O wave 
and a single G wave are excited, two Bloch waves are 
necessary and sufficient for describing the crystal wave- 
field. The situation is analogous to that in double re- 
fraction of usual crystal optics. The difference is that 
the two Bloch waves can interfere with each other, 
since they have the same direction of polarization, 
whereas the ordinary and extra-ordinary waves in the 
usual crystal optics are perpendicular in polarization. 
Thus, we may expect interference fringes of the Bloch 
waves. These are the Pendell6sung fringes with which 
we are concerned in this review article. The fringes and 
the associated phenomena have been predicted and 
described theoretically by Ewald in his early papers 
mentioned above. 

The Pendell6sung fringes were observed first in elec- 
tron-micrographs of MgO independently by Heiden- 
reich (1942) and Kinder (1943). The behaviour was 
very close to the theoretical prediction of Ewald. In 
X-ray diffraction they were observed first by Kato & 
Lang (1959) in the diffraction topographs of Si. The 
historical review of both X-ray and electron cases is 
briefly mentioned in their paper. 

In X-ray cases, the appearance of the Pendell6sung 
fringes was very different from that predicted theoret- 
ically. In the theories previously mentioned, a plane 
wave was assumed as the incident wave. The theory 
will be called 'plane wave theory'. Under normal ex- 
perimental conditions, however, the incident X-rays 
must be considered as a spherical wave, namely a con- 
tinuous set of coherent plane waves. The dynamical 
theory, therefore, required to be revised specifically 
to fit this experimental situation.* The theory was pre- 

* Recently, attempts to obtain Pendell6sung fringes under a 
plane wave condition have been made successfully (Malgrange 
& Authier, 1965; Hart & Milne, 1968; Batterman & Hilde- 
brandt, 1968; Kohra & Kikuta, 1968). 
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sented by Kato (1960, 1961a, b) and called 'spher- 
ical wave theory'. Later, the theory was further ex- 
tended to absorbing crystals (Kato, 1968b, c) and 
to crystals exhibiting a weak lattice distortion (Kato, 
1963c, 1964a, b; Kato & Ando, 1966). These are 
the theoretical bases for the absolute determination of 
the structure factors which is the topic of this review. 

In the next section (II) the principles of the present 
method are summarized. In the following sections the 
results obtained so far (section III) and some critical 
comments of the present method (section IV) are de- 
scribed. In the last section, a new method of deter- 
mining the structure factors on a truly absolute scale 
is described (Kato & Tanemura, 1967). The method 
is based on a combination of Pendell6sung fringes and 
interferometry fringes developed by Bonse & Hart 
(1965a, b and c). 

II. The principle of determining structure factors 

II(a). Section topographs 
According to the spherical wave theory, the inten- 

sity field in the reflexion plane determined by O and 
G beams is given by 

Ig = A (fl )Z{ Jo(fl ) (xx')  * } z , (1) 

where A is a constant, J0 the Bessel function of the 
zero order, and x and x' are the perpendicular distances 
from the observation point to the O and G beams 
passing through the entrance point, respectively. The 
parameter fl implies that 

f l= (27r/2) (~vW-g)*C/sin 20B, (2) 

where 2 is the wave length, 0B the Bragg angle, ~g the 
gth Fourier coefficient of the polarizability of the 
crystal for X-rays; C is the polarization factor, which 
is either unity or cos 208, depending on the mode of 
polarization. The quantity ~,g is related to the crystal 
structure factor Fg by the formula 

~g=(AZ/lzV) (eZ/mc2)Fg, (3) 

where v is the volume of the unit cell and e, m and c 
are the physical constants conventionally used. 

Equation (1) indicates an undulatory field in which 
a contour of equal intensity has the form of a hyperbola 
as illustrated in Fig. 1. Upon using the asymptotic form 
of the Bessel function one can obtain an approximate 
formula of the intensity along the net plane 

b 

Ig=(2Afl/rc sin OB) (l/e) COS2(fl sin 080-- n/4), (4) 

where Q is the distance from the incident point along 
the net plane. Since the intensity factor (l/e) can be 
eliminated by a suitable experimental technique, we 
are not concerned with this factor. 

According to equation (4) the fringe spacing is given 
by (zc/fl sin 08). In practice, we are forced to use un- 
polarized X-rays. The intensity field is a superposition 
of the two intensity fields corresponding to the two 

modes of polarization (Hattori, Kuriyama & Kato, 
1965). Then, the fringe spacing is given by 

Ag=(Trv/2 cos 08) (mc2/e2)lFgl-l. (5) 

Another effect of polarization, which is important in 
the determination of structure factors, is a periodical 
fading of the fringes due to the beat of the two sets 
of fringes. The fringe positions are displaced by one 
half of A~ in the fringe regions on both sides of a fading 
region. 

Usually, an incident beam having a flat pencil form 
and a wedge shaped crystal are used. The arrange- 

X-rays ~ E 

" / i  7, R/  / / 
1 I ~ 1 / / P / 

, /  

i i i  I /  

crystal 

n a  

Fig. 1. The crystal wave field (upper part) and the correspond- 
ing section topograph (lower part) in a wedge-shaped crystal. 
E: Entrance point; ET: The direction of the incident beam. 
ER: The direction of the Bragg-reflected beam. n,: The nor- 
mal to the exit surface, x and x': The perpendiculars to ET 
and ER respectively from an observation point P. e: The 
direction along the net plane, y: The bisector of the wedge 
angle of the section topograph, o9: The wedge angle of the 
section topograph. 0~: The angle between na and the direc- 
tion e. 
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(a) 

Fig. 2. X-ray diffraction topograph of a wedge-shaped crystal of Si (after T. Kajimura). (a) Section- 400. 

[To face p. 120 
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(b) 

Fig. (2 cont). X-ray diffraction topograph of a wedge-shaped crystal of Si (after T. Kajimura) (b) Traverse: 220. 
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ment will be seen in Fig. 3. The topograph, therefore, 
is a triangle pattern in which a set of hyperbolic fringes 
is recorded [Fig.2(a)]. This is called a 'section topo- 
graph'. In practice, the fringe spacing is measured 
along the bisector of the triangle pattern (Fig. 1). This 
direction y, however, does not exactly correspond to 
the direction 0 along the net plane. Nevertheless, since 
the relation of the observed pattern and the crystal 
intensity-field is a linear transformation, provided that 
the wedge form of the crystal is ideal, and owing to 
the properties of a hyperbola, one can conclude that 
the observed fringe spacing A~ is given by 

As __ Ae ff)= =-__=__=, (6) 

where ~ is a geometrical factor. For a simple case, 
it has the form (Katagawa & Kato, 1965): 

gs~= ( sin 0B/sin 00/2) 

x [ cos 00. cos (0B+e)/COS (0n--e)] ~ , (7) 

where the angles c¢ and co are explained in the caption 
of Fig. 1. The required conditions of the geometrical 
arrangements are: 

(i) The exit surface of the crystal is perpendicular 
to the reflexion plane. 

(ii) The net plane is perpendicular to the reflexion 
plane. 

(iii) The photographic plate is perpendicular both 
to the reflexion plane and the direction of the Bragg- 
reflected beam. 

When the topographs of g and - g  reflexions are 
available one can eliminate the parameter c~. The fringe 
spacing Ag is given in terms of A~ and ALg as 

A~= (A~W_=)~( sin 00g/2. sin 00-gl2) ÷ 

x ( cos cog cos 00-g)-* sin -1 0B. (8) 

j /  

\\\ilit i. 

Fig. 3. The configuration of the incident X-rays and the crystal 
for obtaining the section topograph and the traverse topo- 
graph. A recording photographic plate is placed behind the 
crystal. For obtaining the latter the crystal and the plate 
are moved back and forth simultaneously as shown by the 
arrows. When the crystal is e-quartz with a Dauphin6 twin 
T, two different sets of parallel fringes are expected, respec- 
tively, in the crystal parts A and B divided by the twin. 

This formula is very convenient since the right hand 
side includes only the quantities which can be deter- 
mined directly from the topographs. 

The following geometrical aspects of the theoretical 
results mentioned above were examined experimen- 
tally: (i) The hyperbolic form of the fringes (Hattori & 
Kato, 1966). (ii) The absolute positions of the fringes, 

or theadditional phase ( 4 ) i n  equation (4 ) (Homma,  

Ando & Kato, 1966; Hart & Milne, 1968). (iii) Various 
aspects due to polarization effects (Hattori, Kuriyama 
& Kato, 1965). From these studies it was confirmed 
that the spherical wave theory is satisfactory. 

By using equation (6) or equation (8) one can deter- 
mine the fringe spacing A~r. Since A~ is related to the 
structure factor IFd through equation (5), [Fg[ is in- 
versely proportional to the observed fringe spacing A] 

s s or (A=A_=) . The proportional factors involve only the 
well-determined physical constants and geometrical 
quantities. In this sense, the structure factors can be 
determined on the absolute scale. 

II(b). The traverse topograph 

By using the traverse technique (Lang, 1959) one can 
obtain a traverse topograph. Experimental arrange- 
ments will be seen in Fig. 3. For wedge-shaped crystals 
the parallel fringes are recorded as shown in Fig. 2(b). 
Roughly speaking, they are formed as the locus of the 
apex points of the hook-shaped fringes in the section 
topographs. Their appearance is very similar to the 
Pendell6sung fringes of equal thickness in electron 
micrographs. In fact, the fringes concerned here belong 
to the category of equal thickness fringes. 

By the use of the reciprocity theorem in optics 
(Lorentz, 1905; Laue, 1935), the intensity at a point 
P of the traverse topograph can be given by the spa- 
tially integrated intensity of a virtual section pattern 
which would be obtained with X-rays reversely emitted 
from a virtual source located at the point P concerned 
(Kato, 1961b, 1968a). This result holds very generally, 
whatever absorption and lattice distortion are present. 
The integrated intensity is exactly the same as the 
angular integrated intensity in the plane wave theory 
(Waller, 1926). It is proportional to 

Jo(t)=(rc/2) Jo(q)dq , (9) 

where t is the crystal thickness corresponding to the 
point P in the traverse topograph and J0 is the Bessel 
function of the zero order. The parameter a is given by 

a=(2z/2)Cl~ugl/( cos 00. cos Og)~, (10) 

where 00 and Og are the angles (K0,ne) and (Kg, ne) 
respectively, ne being the normal to the entrance sur- 
face. 

The Waller integral (9) is an oscillating function 
with the period 2re, superposed on a background inten- 
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sity Qr/2). The fringe spacing* along the direction ne 
inside the crystal, therefore, is given by (27r/~). The 
observed fringe spacing A t is a linear transformation 
of this spacing, as in the case of section topographs. 
Thus, we can write A t in the form 

A t  - -A¢~ t (11) glg__g , 

where ~ t  is a geometrical factor. Again, the observed 
spacing is inversely proportional to the structure factor 
IFgl, with a well-known proportionality factor. There- 
fore, the fringe system appearing in traverse topographs 
also can be used for the determination of the structure 
factor. 

For a wedge-shaped crystal, when the geometrical 
conditions (ii) and (iii) described in connexion with 
equation (7) are satisfied, it turns out that 

• t= (1 /cos  0B) ( cos 00/cos Og)~{1/cos z 0g 

+1 /cos  z ~ g - 2  cos J /cos  Og cos ~0g}-* (12) 

where ~0g is the angle (Kg, n,), n,  being the normal to 
the exit surface, and 6 is the wedge angle, i.e. the angle 
(ne, n,). The polarization effects are similar to those in 
section topographs and have been discussed for 
traverse topographs by Hart & Lang (1965), and by 
Yamamoto, Homma & Kato (1968). They are taken 
into account in the expression (12). 

IH. Experimental results 

III(a). Absolute measurements o f  IFgl 
III(a). 1. Silicon 

In the first experiment on PendelHSsung fringes 
(Kato & Lang, 1959), 111 and 311 reflexions were 
studied by the traverse method. The structure fac- 
tors obtained were always larger by several per- 
cent than the theoretical values published in Inter- 
national Tables for  X-ray Crystallography (1962). 
Since, at that time, the experimental technique was at 
a very preliminary stage it would be of no advantage 
to discuss this discrepancy. 

The structure-factor determination was performed 
carefully by the use of section topographs (Hattori, 
Kuriyama, Katagawa & Kato, 1965). The results are 
listed in Table 1. The accuracy was extensively studied 
for the {111} reflexions. The root mean square of the 
deviations among 13 independent measurements, with 
different radiations (Mo Kal and Ag Kal) and geom- 
etry, and for specimens of different origins, was about 
1.5%. Hart (1966) also obtained [Fgl of 220 and 440 
net planes with Mo Ka~ by the use of a similar tech- 
nique. These results also are listed in Table 1. Since 
the measurements are independent, the mutual agree- 
ment is of importance. 

* Inside the crystal, actually, no intensity field is excited to 
give the fringes parallel to the entrance surface .The fringe 
spacing, therefore, is a virtual one. 

Table 1. Atomic structure factors IFg[ of Si at 20 °C 

hkl Hattori et al. Hart G6ttlicher et al. 
111 10.98 10"75 
220 8"58 8.60 8"48 
311 7-78 7"80 
400 7"02 7"02 
331 6.89 6"94 
422 6.20 6"34 
333 5"86 
511 5"82 5"93 
440 5.41 5"32 5"39 
531 5"20 5"11 
620 4"71 4"71 
533 4"49 4-54 
444 4"22 4"21 
551 4.10 3"96 

Hattori et al.: Ag K~I and Mo K~I; Pendell6sung method. 
Hart: Mo K~I; Pendell6sung method. G6ttlicher et al.: Mo; 
powder method. 

For comparison with other methods Table 1 contains 
also the results of G/Sttlicher et al., obtained from in- 
tensity measurements on powders with Mo radiation 
(G6ttlicher, Kuphal, Nagorsen & W61fel, 1959; 
G6ttlicher & W61fel, 1959). The agreement is satis- 
factory over a wide range of sin 08/2. Their results 
with Cu radiation are systematically different by an 
amount of several per cent. Weiss has pointed out that 
the Pendell~Ssung values were in a good agreement with 
his own values obtained by intensity measurements on 
'perfect' crystals except for the 400 reflexion (Weiss, 
1966; De Marco & Weiss, 1965). 

The structure factors IFgl obtained from the Pendel- 
1/Ssung method (Table 1) can be analysed to derive 
some quantities of physical importance. By the use of 
the theoretical result that the Debye-Waller factor has 
the form e - ~  as in dynamical phenomena (Parthasa- 
rathy, 1960; Ohtsuki, 1964), the Debye temperature 
O~ was determined as 538 °K. This is in good agree- 
ment with the value 546°K obtained from intensity 
measurements on a 'perfect crystal' (Batterman, 1962). 

Brill (1960) has discussed the bonding charge in the 
diamond lattice by an approximate method, in which 
the bonding charge was assumed to have a distribution 
exp [-(r/re)2]. Following this method it is concluded 
that the number of the bonding charge (N) is 0.45 and 
the effective radius (re) of the distribution is 0.57 A. 
The results are considered as reasonable when one 
compares them with Brill's results on diamond, N = 0.45 
and re=0"45 A. Recently, Dawson (1967a, b, c) 
has presented a theory which enabled us to analyse the 
structure factors of the diamond lattice without 
ad hoc assumptions on the charge distribution. He 
pointed out that the Pendell/Ssung values listed in 
Table 1 are slightly more reasonable than the results 
obtained by other methods. 

III(a). 2. Germanium 

Batterman & Patel (1968) have obtained the struc- 
ture factors of 111 and 220 planes. Actually, they 
measured the intensity distribution of the Bragg- 
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reflected beam from a wedge-shaped crystal as a 
function of crystal positions along a direction nor- 
mal to the edge of the wedge. This method is equiv- 
alent to the method of traverse topographs, except 
for minute technical differences. Since, however, the 
absorption in Ge is fairly high even for Ag Kal, the 
intensity distribution is to be compared with equation 
(18) or (19) in the following instead of equation (9). 
The agreement between the theoretical and experimen- 
tal curves was fairly satisfactory. 

They compared the results of [Fg] with those ob- 
tained by their own intensity measurements of the 
surface reflexion from 'perfect' crystals. They pointed 
out that PendellSsung values were always a few per cent 
larger than the values obtained from the intensity 
measurements. Since the two methods each have their 
own merits and disadvantages, it is highly desirable to 
find the real causes of the discrepancy mentioned above. 

III(a). 3. Quartz 
Quartz also is one of the promising materials 

to which the PendellSsung method can be applied. 
The preliminary study was performed by Kato & 
Lang (1959). Recently, about 40 net planes of low 
orders have been examined by the section topographs. 
Researches are in progress (Homma, Yasuami & 
Kato). Some results are listed in Table 2. One of the 
difficulties in the experiment with quartz is that, fre- 
quently, natural quartz includes plate-like defects, some 
of them being lamellar twins. Nevertheless, since we 
can sort out almost perfect parts of the crystal, the 
Pendell6sung method has an intrinsic merit in the sense 
that the mixing of hk, l and hk,[ reflexions due to 
Dauphin~ twinning can be avoided. 

III(b). Relative values of the structure factors 
In some special cases, we can determine the relative 

values of [Fg[ without being bothered by the geomet- 
rical factors, ~ and ~ t  in equations (6) and (11). In 
fact, the errors in them are the main source of error 
in the absolute determination of [Fg[. The fringe spa- 
cings themselves can be determined with an accuracy 
better than one in a thousand, in favourable cases. 

III(b). 1. [Fhk,t]/[Fhtcfi[ in quartz ( Yamamoto, Homma & 
Kato, 1968) 

Fig.3 illustrates the arrangements of the experi- 
ments. T is a Dauphin6 twin which divides the crystal 

into two parts A and B. On the exit surface, hook- 
shaped fringes and parallel fringes are expected in the 
section and traverse topographs, respectively. The 
ratio of the fringe spacings for A and B, therefore, 
is exactly proportional to the structure factors IFne,t[ 
and ]Fh~dl. Table 3 is an example which demonstrates 
the accuracy of the ratio. For different specimens and 
geometrical conditions, the mutual agreement in a good 
specimen (a) is better than 0.1%. The difference be- 
tween (a) and a worse specimen (c) is about 0.5%. This 
result may give an experimental indication of the error 
caused by lattice distortions. 

Table 3. The ratio of the structure factors, IFloll/IFloTI, 
for different specimens and different orientations (after 

Yamamoto, Homma & Kato, 1968) 

Specimen Geometry Ratio 
(a) A(r) 0-65756 ___ 0-00037 

A(R) 0"65713+0"00041 
(b) A(r) 0"65965 + 0-00044 
(c) A(r) 0"65661 __+ 0"00066 

A(R) 0"66033 ___ 0 " 0 0 0 6 4  

A(R) denotes the geometrical condition that the crystal part A 
reflects X-rays by the net plane R, 10,1. The notation r denotes 
the 10,i plane. 

The ratios of the structure factors concerned here 
may not be valuable in obtaining information of charge 
distributions. However, they can be used for estimating 
the accuracy of Ifgl obtained by other methods. In 
fact, they were compared with the results of Young & 
Post (1962) and of Zachariasen & Plettinger (1965). 
It was concluded that their observed values of Ifgl for 
low order reflexions would include errors of about 10% 
due to extinction and twinning effects, but the errors 
could be reduced down to about 2% by the correction 
formulae of Zachariasen (1963). 

III(b). 2. Temperature dependence of Debye temperature 
OM of Si 

When the Pendell6sung fringes are recorded at dif- 
ferent temperatures the ratio of the spacing is inversely 
proportional to the ratio of the Debye-Waller factors, 
e -M. Thus, we obtain the relation 

log [A(R)/A(T)]=M(R, OM(R) ) -M(T ,  OM(T)) , (13) 

where R and T denote room temperature and a low 
temperature, respectively, and OM is the Debye tem- 

Table 2. The structure factors of  o~-quartz at room temperature 
H.Y.K. Z.P. Y.P. 

^ 

IFob~l "lFoo=l IFe~.d IFob~/' "lFo~.d IFob~( 
101 41 "63 41 "91 39"31 22-40 36"08 34"07 
201 9"01 8"34 8"35 7"90 8"33 9"06 
301 28"12 26"61 26"75 20"79 28"09 37"75 
401 5"45 5"35 5"12 5"26 5"67 7"25 

H.Y.K.: Homma, Yasuami & Kato, unpublished. 
Z.P. Zachariasen & Plettinger (1965). 
Y.P. : Young & Post (1962). 

A C 2 5 A  - 9 
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perature for crystal diffraction at the relevant tem- 
peratures. Since the M value at room temperature and 
the functional form of M are well known, the Debye 
temperature Ozu(T) can be determined. Using this 
principle, OM(T) was determined at 45 °K* and 78 °K 
(Katagawa, Usami & Kato, 1967). The results are as 
follows: 

OM(45) = 570°K_+ 10°K 

OM(78) = 562 °K + 5 °K 

assuming OM(R)= 538 °K, which was obtained by the 
Pendell6sung method at room temperature (Hattori, 
Kuriyama, Katagawa & Kato, 1965). 

Batterman & Chipman (1962) showed theoretically 
that the Debye temperature of diamond-type crystals 
has a maximum at a low temperature, Tin. In the case 
of Ge, Tm is 20 °K and the increment OM(Tm) -- OM(R) 
is of about 17 ° . If the frequency spectra of lattice 
vibration for Ge and Si are assumed to be the same 
on a proper frequency scale (v/vo), where v0 is essen- 
tially the frequency corresponding to the Debye tem- 
perature, one can conclude that the functional form 
of (OM/Vo) must be identical on the scale of (T/vo). 
Thus, in Si, it is expected that Tm is 35 °K and 

OM(45)--OM(R)=24 ° 

O~I(78)-- OM(R)=17"3 ° 

The experimental values of OM(T) -- OM(R) agree with 
these theoretical values within the experimental errors. 

The experiments described here are an example of 
some promising experiments, which enable us to know 
the change of charge distributions from the accurate 
ratio of the structure factors depending on some phys- 
ical parameters. 

IV. Causes of errors in the PendeH•sung method 

IV(a). The diffraction theory 
Since real crystals used in experiments cannot be 

non-absorbing and ideally perfect, it is necessary to 
consider the effects of absorption and of lattice distor- 
tion by the available extended theories. 

IV(a). 1. Absorbing perfect crystals 
Recently, the rigorous diffraction theory for absorb- 

ing perfect crystals has been presented (Kato, 1968b, 
c). In the case of section topographs the expression 
corresponding to equation (1) has the form 

Ig=A  exp -po(X + x')/ sin 20B. IfllZlJo(fl(xx')*)l 2 . (14) 

Here/t0 is the mean linear absorption coefficient, given 
by 

p0 = (2z~/2)gt~ (15) 

and fl has the same form as equation (2) but should 

be understood as complex, because lllg~-g has the form 

~g~_g  = (~¢ g~t_g)r d- i ( ~ g ~ - g )  ~ (16) 

in absorbing crystals. In these equations, the super- 
scripts r and i indicate the real and complex parts, re- 
spectively. If we use the asymptotic expression of J0 
with a complex argument, and interpret the results with 
the concept of energy flow of the Bloch wave (Laue, 
1952; Kato, 1952; Borrmann, 1953; Borrmann, Hilde- 
brandt & Wagner, 1955; Ewald, 1958; Kato, 1958), 
we can derive as an approximation the results (Laue, 
1949; Zachariasen, 1945, 1952) obtained by the con- 
ventional plane wave theory as to the Borrmann ab- 
sorption. 

For thin crystals defined by fl~O sin OB ~ 1, the dis- 
placements of the fringe positions of the maximum and 
minimum intensities are given, respectively, as 

(Ao/O)max= -2"o/2~ (17a) 

where 
(Ao/o)min =2"oZ22°,,, , (17b) 

Zo = F~/C { (Fg F-o)* }r (18a) 

2" = {(FgF-g)~}~/{(FgF-g)~} r , (lgb) 

and 2 ° and 2~ are the mth order zero points of Bessel 
functions J0 and J1, respectively. For crystals thick in 
the sense that I/~10 sin 0B>> 1,* the expressions of (Ao/o) 
are rather complicated, but they are similar to the 
values given by equations (17a and b) to an order of 
magnitude. Since the fringes appear clearly in a region 
where 2"2 ° and 2"2~m are less than, or nearly equal to 
unity, the relative displacement of the fringe positions 
is of the order of 2"02". In most crystals, 2"0 and 2" are 
smaller than 0.1. Thus one can conclude that the errors 
due to absorption should be neglected unless we are 
concerned with an accuracy of about 0.1%. 

In the case of traverse topographs, equation (9) must 
be modified in the form 

Jg = (re/2) exp -po(X + x ' ) /s in  20B. {(1-2"2)1(1 _g2)} ,  

x Jo(q)dq 

oo )] + r (1/r!r!) (h/Z)2,g2r+l(~( l -g2)~ , (19) 
r = l  

where g is a parameter proportional to 2"0 (the factor 
is much less than unity), h=~t(x2+gZ) • and g2r+l is 
the (2r+ 1) times repeated integral of the Bessel func- 
tion J0. 

Equation (19) is surprisingly close to the approximate 
formula previously obtained (Ramachandran, 1954; 
Kato, 1955) 

* The apparatus used at this temperature is that of Profes- * For most crystals, the ranges of 0 in thin and thick crys- 
sor Imura. tals overlap. 
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Jg = (n/2) exp -/x0(x + x ' ) / s in  20B 

Jo(q)dq + {Io(h)- 1 . x (20) 

where I0 is the modified Bessel function of zero order. 
In the range h <  1 where the fringes are clearly ob- 
served, the displacement of the fringes is again about 
0.1%. 

IV(a). 2. Distorted crystals 

Recently, diffraction theories for distorted crystals 
have been developed along various approaches (Pen- 
ning & Polder, 1961; Takagi, 1962; Taupin, 1964; 
Bonse, 1964; Kato, 1963a, b, ¢; 1964a, b; Kato & 
Ando, 1966). Among them, the theories developed 
by the present author are adequate for the fringe 
phenomena in distorted crystals. 

Under the presence of lattice distortion, the Bloch 
waves are modified, and the trajectories and the asso- 
ciated phases are different from those of the Bloch 
waves in perfect crystals. As a result, the fringe spacing 
is changed by the lattice distortion (Kato, 1964b; Hart, 
1966; Ando & Kato, 1966). Since we are concerned 
with a small lattice distortion extended over a wide 
range, it is reasonable to assume that the strain gradient 
is constant. Under this condition the phase difference 
between the two modified Bloch waves arriving at a 
position P is given by 

• =~/2  +(m~c/lf l)  x {2 sinh-1½(Z z -  X 2) 

+ ½ [ ( Z 2 - X Z ) Z + 4 ( Z z - X 2 ) ] * } ,  (21) 
where 

mo=(rc/2)l~glC/sin 0B ; (22) 
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Fig. 4. The phase difference of  the modified Bloch waves and 
the contract ion of the fringe spacing in distorted crystals. 

e = tan 0B ; (23) 

[ ~2 ~92] 
f =  (2~/sin 20B) COS 20B }Z-- z- -- sin 2 0B-0- f i -  (g.  u) .  

(24) 
Here, x and z are the coordinates of P, the axes being 
normal to and along the net plane, respectively. The 
origin is chosen at the entrance point.* The vector g 
is the reciprocal lattice vector and u is the displace- 
ment vector of lattice points. In equation (21) the nor- 
malized coordinates 

X =  (f/moe )x (25a) 

Z = ( f / m o ) z  (25b) 
are used. 

First of all, since 05 is a function of (Zz-X2) ,  the 
form of the Pendellrsung fringes is a hyperbola also 
in distorted crystals. Next, q5 increases more rapidly 
than linearly with increasing (Z2-X2)  ~ (Fig.4). The 
fringe spacings, therefore, decrease in distorted crystals. 
Because of the expressions for X and Z, the contraction 
of the spacing becomes more predominant when the 
crystal has a larger strain-gradient and a smaller struc- 
ture factor. In addition, the contraction increases with 
increasing crystal thickness, i.e. with the order of the 
fringes. This property is useful for checking the pres- 
ence of lattice distortion. 

For convenience, the fringe spacing along the net 
plane is defined by 

= 2 ~ / o ~ -  (26) A(O) / oo " 

Expanding equation (20) at X =  0 in terms of Z, one 
can obtain for small distortion 

A(o)=Ao{1 - (1/8re z) ( f e A o o ) 2 + . . .  } (27)]" 

where A0 = ~z/moc is the spacing in the perfect crystal.:]: 
In order to estimate the effects of lattice distortion 

the mean value over the crystal thickness t is assumed 
to be 10 -3. For a pure bending of the lattice where 
32ux/3z2 is the radius of curvature R of the net plane, 
the tolerable change in strain over the thickness t is 
given by 

t / R = O.15( d/ Ao) . (28a) 

For a pure dilatation of the lattice spacing where 
Oux/Ox =Ad/d,  the tolerable change of the strain over 
2t tan OB, the width of the wave field at the exit sur- 
face, is given by 

Ad/d=O.O15 cot On(d/Ao) . (28b) 

* Therefore, z is identical to 0. 
t Equation (39b) of the paper by Kato (1964b) must be 

revised as s n = + moc[zZ - (x/c)Z]{1 + (1/24) (f/mo) 2 [zZ - (x/c)2] 
+ . . . } .  

:~ Here, one mode  of  X-ray polarization is considered. For  
unpolarized X-rays, A0 can be replaced by Agc of equat ion (5). 

A C 25A - 9* 
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For low order reflexions d/Ao is of the order of 10 -5. 
Remembering that the stress corresponding to a strain 
of 10 -6 is 10 g.mm -2, one can eliminate such a harmful 
strain due to any lack of care in the surface etching or 
mounting the specimen etc. Nevertheless for higher 
order reflexions, the crystals are required to have much 
smaller strain gradients. There is some evidence that 
crystals are slightly distorted over a wide range, par- 
ticularly in crystals grown from solutions with impur- 
ities (Ikeno, Maruyama & Kato, 1968). Any localized 
distortion such as dislocations and inclusions must be 
avoided, but they are detectable. 

IV(b). 1. Experimental causes o f  errors 
The experiments consist of the measurement of the 

fringe distance Ag and the determination of the geo- 
metrical factors qs~r or q~. Their accuracies have been 
mentioned in the pertinent places in the preceeding 
sections. Here, therefore, only a few additional points 
are described. 

The accuracy in measuring Ag is better than 0.1% 
in favourable cases of low order reflexions. It is advis- 
able to use the maxima and minima of the intensity 
distribution for the points of measurement. For higher 
order reflexions, accuracy is decreased due to the fading 
effects and the decrease of the available number of the 
fringes. 

The accuracy of ~ or ~ t  is about 1%. The details 
depend upon the methods adopted. In the method of 
section topographs, the wedge angle co of the topo- 
graph is small in low order reflexions, so that the at- 
tainable accuracy is limited. It is highly desirable to 
make an ideal form of the wedge crystal. 

Other causes of errors in ~r t are a geometrical fault 
in setting the crystal and the photographic plate with 
respect to the X-ray beams. If one intends to decrease 
the errors to less than 0.5%, it is necessary to reduce 
the departure from the ideal geometry by less than 
about one degree. In the method of section topographs, 
however, the faults in the geometry can be checked 
experimentally through the topographs of g and - g  
reflexions and the direct image of the incident beam. 

Incidentally, Bonse & Hart performed their experiment 
with Cu Kcq of a wide beam width. Their experiment 
is equivalent to the one of the traverse type, whereas 
the present experiment is of the section type, in the 
sense described for the Pendell/Ssung experiment for a 
single crystal. 

If the crystals S, M and A satisfy the Bragg conditions 
simultaneously the X-rays are split and recombined 
again after penetrating the crystal A, as illustrated in 
Fig. 5. Since the incident wave is a spherical wave, the 
coherent wave fronts have the width as illustrated there. 
If we insert a specimen of wedge form, not necessarily 
crystalline, in the wave Do the phase difference between 
the waves Do and Dg brings about interference fringes 
in both the waves B0 and Bg (Fig.6). The phase dif- 
ference is given by ( K 0 - K ; ) x  l, where K0 and K; are 
the wave numbers in vacuo and in the specimen, re- 
spectively, and l is the physical path length in the 
specimen. Thus, one can obtain the following expres- 
sion for the spacing Ag of the fringes which might be 
virtually expected inside the specimen if the vacuum 
wave Dg was superposed on the wave Do 

A8 = 2=/(Ko- K; )=  2/(1 - n),  (29) 

X-rays 

Sl I 

Do 

M 

V. The determination of IFg Iby a combination of 
Pendelliisung fringes and interferometry fringes 

Recently, Bonse & Hart have demonstrated interfer- 
ence fringes of Young's type in the X-ray region (Bonse 
& Hart, 1965a, b, c). They presented also the theory 
of the interferometry based on the plane wave theory 
(1965c). 

Fig. 5 is the experimental set-up which was used for 
our purpose (Kato & Tanemura, 1967). It is similar 
to the one originally used by Bonse & Hart, except 
that the X-ray beam is narrow enough compared with 
the width of the diffraction patterns and that Ag Kcq 
is employed. These modifications are required in order 
to specify the optical path of X-rays in the specimen 
crystal C, and to reduce the absorption in the specimen. 

Dog 

A! / \ I 

~ P  

Fig. 5. The experimental set-up for obtaining the true absolute 
values of IFgl. 
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Fig. 6. X-ray interferometry fringes of section type (after S. Tanemura). B0 and Bg denote the waves illustrated in Fig. 4. 
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n being the refractive index of the specimen. Since the 
index n is well known, we obtain that 

Ag = 2(~v/2) (mc2/eZ)/IFol (30) 

where F0 is the structure factor of the zero order, 
which is essentially the number of electrons in the unit 
cell. The observed fringe spacing A0 is given by 

A0=Agcb0 (31) 

where cb0 is a geometrical factor similar to q~ in equa- 
tion (6). 

The Pendell6sung fringes, on the other hand, are the 
interference fringes between the g components of the 
two Bloch waves. The fringe spacing A~ can be repre- 
sented in the form similar to equation (29): 

Ag = 2~/Ik]~)- k~Z)l (32) 

where kC, ~) and kC, z) are the wave vectors propagating 
along the net plane.* From this, we can derive equa- 
tion (5). 

Comparing equations (5) and (6) with equations (30) 
and (31) one obtains the relationship 

IFdllFol =(Ao/Ag)/2 cos 0n ,  (33) 

provided that ~bo= ~ is satisfied. Thus, the structure 
factor IFgl can be determined on the scale of [F0l. The 
idea is similar to the experiments on ]Fhk,d/[Fnk,TI de- 
scribed in III(b). 1. The condition q~0 = ~ ,  is attainable 
by the following procedures. After taking PendelRisung 
fringes, the specimen crystal is rotated by the Bragg 
angle 08 so that the net plane is brought into the plane 
of the incident beam.]" The interferometer crystal is set 
in a proper position satisfying the Bragg condition, 
and the specimen crystal is traversed by the half width 
of the Do wave. Then, the plane on which the Pendel- 
16sung fringes concerned were produced coincides with 
the central plane of the wave Do. 

Preliminary experiments of 111 and 220 reflexions 
of Si were reported. Unfortunately, so far the mutual 
discrepancy among independent measurements is still 
larger than the probable errors estimated in the meas- 
urements of distance. For this reason, the final results 
of lEg] values are not reported here. 

Finally, it seems worth while to mention a few points 
as to the meaning of [F0]. In order to obtain [Fo] values 
accurately, F0 must be corrected by the dispersion 
theory as 

Fo= Z + iF o + F o . (34) 

* The expression (32) holds for waves propagating in any 
direction. 

t Exactly speaking, the necessary angle of rotation is slightly 
different from 0B since the direction O does not correspond 
exactly to the direction y in Fig. 1. In low order reflexions the 
difference is negligible. 

According to the theory of Cromer (1965) which takes 
into account the exchange correction and relativistic 
effects, Fo=0-48 and F 0=0-48 for Si. Thus, the cor- 
rection F 0 cannot be neglected for experiments of high 
precision.* The conceivable correction for the Thomson 
scattering due to the nucleus is about 2.5 x 10 -4. So 
far this correction is negligible. 

VI. Conclusions 

The Pendell/Ssung method of determining structure 
factors is still in a preliminary stage. The accuracy is 
comparable to that in the high precision experiments 
based on intensity measurements. The advantage, 
however, is that the method gives directly the absolute 
values. Theoretical contaminations such as extinction 
effects are not involved, unless one intends to obtain 
values of ]Fgl accurate to better than a few tenths of 
one percent. Lattice distortions, then, may be as harm- 
ful as the extinction effects in the conventional method. 

The possibility to apply the present method to other 
crystals depends entirely on the technical developments 
of growing perfect crystals in future. In this respect, 
we may be optimistic, bearing in mind the fact that 
the Pendelltisung fringes are observable in NaCI crys- 
tals (Ikeno, Maruyama & Kato, 1968), which have been 
treated as typically mosaic crystals in X-ray crystal dif- 
fraction. 

Finally, it seems worth while to point out that the 
ratio of the structure factors can be determined with 
an accuracy of 0.1%, which is not easily attainable by 
the conventional method. 

It is a most appropriate time for the author to ex- 
press his sincere thanks to Professors P.P. Ewald, R. 
Uyeda, A. R. Lang and T. Noda who have shown their 
encouragement during the past ten years. He also 
acknowledges his gratitude to his colleagues, without 
whose collaboration this review article would not have 
materialized. 
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